AI กำลังเพิ่มบทบาทในวงการแพทย์


ผลการศึกษาของ Accenture ชี้ว่า ภายในปี 2569 การประยุกต์ใช้งาน AI ในด้านการแพทย์จะช่วยประหยัดค่าใช้จ่ายได้ถึง 150 พันล้านดอลลาร์ต่อปี

การดำเนินการทางการแพทย์ต้องอาศัยกระบวนการต่าง ๆ อย่างมาก จึงมีความเป็นไปได้สูงมากที่จะใช้ AI เพื่อขับเคลื่อนการปรับปรุงประสิทธิภาพ ตอบสนองความต้องการในส่วนที่ยังเข้าไม่ถึง และรองรับการทำงานซ้ำ ๆ โดยอัตโนมัติ ทั้งในส่วนของการวิจัยและพัฒนา (R&D) การดูแลรักษาผู้ป่วย การถ่ายภาพทางการแพทย์ และงานด้านการบริหารจัดการ

การใช้งาน AI ที่ได้รับความนิยมในวงการแพทย์

การผ่าตัดโดยใช้หุ่นยนต์

เทคโนโลยีเหล่านี้จะช่วยปรับปรุงการวิเคราะห์ข้อมูลจากเวชระเบียนก่อนการผ่าตัด แนะนำเครื่องมือในแบบเรียลไทม์ในระหว่างการผ่าตัด ใช้ข้อมูลจากประสบการณ์การผ่าตัดจริงเพื่อนำเสนอเทคนิคการผ่าตัดใหม่ ๆ ประโยชน์ที่ได้รับคือ การลดข้อผิดพลาด และลดระยะเวลาพักฟื้นของผู้ป่วยภายหลังการผ่าตัด

ตัวอย่าง: Mazor Robotics ใช้ AI เพื่อช่วยเหลือในกระบวนการผ่าตัดแบบส่องกล้อง

ความช่วยเหลือของพยาบาลเสมือนจริง

แอปฯ ที่สั่งงานด้วยเสียงและข้อความได้รับการฝึกฝนเพื่อให้สามารถถามและจัดการคำถามเบื้องต้นเกี่ยวกับสุขภาพ โดยรองรับการตรวจสุขภาพผ่านการสั่งงานด้วยเสียงพูดและ AI ลดการเดินทางไปยังโรงพยาบาลโดยไม่จำเป็น ประเมินอาการ และส่งผู้ป่วยไปยังแผนกที่เกี่ยวข้องเพื่อให้การดูแลรักษาอย่างมีประสิทธิภาพสูงสุด เป้าหมายของแอปฯ นี้คือ เพื่อลดระยะเวลาที่พยาบาลต้องใช้ในการให้บริการแก่ผู้ป่วย

ตัวอย่าง: Sensely นำเสนอตัวพยาบาล Molly ที่ขับเคลื่อนด้วย AI ซึ่งรับฟังและตอบคำถามของผู้ใช้

การวินิจฉัย

ด้วยการปรับใช้เทคโนโลยีการรู้คิดเพื่อปลดล็อคข้อมูลเวชระเบียนจำนวนมหาศาล ระบบ AI จะให้คุณประโยชน์มากมายในการจดจำแบบแผนของภาพสแกนหลายล้านชุดภายในระยะเวลาที่รวดเร็ว และมีความแม่นยำสูงมาก โดยเป้าหมายหลักคือการค้นคว้าวิจัยด้านมะเร็งและรังสีวิทยา

ตัวอย่าง: LYNA (Lymph Node Assistant) ของ Google AI ตรวจจับมะเร็งเต้านมระยะแพร่กระจายได้อย่างแม่นยำถึง 99%

การบริหารจัดการ

บุคลากรทางการแพทย์ต้องเสียเวลามากมายไปกับกิจกรรมที่ไม่ได้เกี่ยวข้องกับผู้ป่วย ดังนั้นจึงมีการใช้แอปฯ แปลงเสียงพูดเป็นข้อความเพื่อลดระยะเวลาสำหรับงานเอกสาร ปรับปรุงการรายงานเรื่องคุณภาพ และวิเคราะห์รายงานทางการแพทย์หลายพันฉบับโดยใช้ NLP ในการแจ้งข้อมูลเกี่ยวกับแผนการรักษาพยาบาล ซึ่งทั้งหมดนี้ช่วยให้บุคลากรสามารถดูแลผู้ป่วยได้อย่างเต็มที่ และเพิ่มประสิทธิภาพการทำงาน

การประยุกต์ใช้งาน AI ในกลุ่มอุตสาหกรรมต่างๆ จำเป็นต้องอาศัยการจัดเก็บข้อมูลที่สอดประสานกันระหว่างอุปกรณ์ปลายทาง (edge) ศูนย์คอมพิวเตอร์หลัก (core) และระบบคลาวด์ ดังนั้นการจัดการข้อมูลอย่างไร้รอยต่อจึงมีความสำคัญ องค์กรต่างๆ สามารถเลือกที่จะพัฒนาแอพพลิเคชั่น AI บนระบบคลาวด์สาธารณะหรือระบบที่ติดตั้งภายในองค์กรก็ได้ โดยขึ้นอยู่กับแหล่งข้อมูล ขนาดของชุดข้อมูล และต้นทุนค่าใช้จ่าย

อ้างอิง: Netapp